Best Submissions

Here we show the best solutions for each benchmark. To see the rankings for a benchmark, please click on the benchmark ID.

Benchmark User Country Organization Processing Time
(ms)
Submissions
KS3:SA1:USA_US101-4_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-4_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-6_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-6_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-7_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-8_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-8_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-8_4_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-9_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SA1:USA_US101-9_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:C-USA_US101-31_1_T-1:2018b cyr-ch Germany Technical University of Munich 1
KS3:SM1:C-USA_US101-33_1_T-1:2018b cyr-ch Germany Technical University of Munich 1
KS3:SM1:CHN_Sha-11_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-11_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-11_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-12_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-14_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-14_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-15_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-1_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-1_6_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-1_8_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-2_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-2_5_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-2_8_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-4_4_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-4_6_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-4_7_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:CHN_Sha-7_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Ffb-1_2_S-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Ffb-2_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Ffb-2_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Gar-3_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Gar-3_4_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-10_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-11_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-12_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-14_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-15_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-16_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-16_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-18_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-19_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-25_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-28_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-29_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-29_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-4_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-7_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-8_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-8_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:DEU_Muc-9_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:RUS_Bicycle-6_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:RUS_Bicycle-6_2_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_11_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_13_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_14_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_17_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_19_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_20_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_21_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_22_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_24_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_25_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_4_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_5_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_6_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_7_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_8_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Lanker-2_9_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Peach-3_2_T-1:2018b Country_roads DE TUM 1
KS3:SM1:USA_Peach-4_1_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Peach-4_3_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Peach-4_4_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Peach-4_5_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Peach-4_6_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Peach-4_7_T-1:2018b PeterKocsis Germany TUM 1
KS3:SM1:USA_Peach-4_8_T-1:2018b PeterKocsis Germany TUM 1

Normalized processing times: To provide comparable values for the processing times that were required to calculate each solution, we normalize processing times depending on the CPU that was used. If a user supplies CPU and processing time, the normalized time will be shown in green whereas the actual calculation time can be found in the brackets. We base the normalization on up-to-date data from www.cpubenchmark.net.