
Fundamentals of Artificial Intelligence – Uninformed

Search

Matthias Althoff

TU München

Winter semester 2023/24

Matthias Althoff Uninformed Search Winter semester 2023/24 1 / 113

Organization

1 Formulating Problems

2 Example Problems

3 Search Algorithms

4 Uninformed Search Strategies
Breadth-First Search
Uniform-Cost Search (aka Dijkstra’s algorithm)
Best-First Search
Depth-First Search
Depth-Limited Search
Iterative Deepening Search
Bidirectional Search

5 Comparison and Summary

The content is covered in the AI book by the section “Solving Problems by
Searching”, Sec. 1-4.

Matthias Althoff Uninformed Search Winter semester 2023/24 2 / 113

Learning Outcomes

You can create formally defined search problems.

You understand the complexity of search problems.

You understand how real world problems can often be posed as a pure
search problem.

You understand the difference between tree-like search and graph
search.

You can apply the most important uninformed search techniques:
Breadth-First Search, Uniform-Cost Search, Depth-First Search,
Depth-Limited Search, Iterative Deepening Search.

You understand why Best-First Search generalizes the above search
techniques.

You can compare the advantages and disadvantages of uninformed
search strategies.
Matthias Althoff Uninformed Search Winter semester 2023/24 3 / 113

Motivation

One example how search is used in my research group:

Automated vehicles have to search a collision-free path from a start
to a goal configuration.

Searching in continuous space is difficult.

We discretize the search problem in space and time by offering only a
finite number of possible actions at discrete time steps.

This makes it possible to use classical search techniques as introduced
in this lecture.

start
configuration

goal
configuration

Matthias Althoff Uninformed Search Winter semester 2023/24 4 / 113

Introducing CommonRoad

Motion Planner

Scenario

Solution

Evaluation

Ranking

Composable Benchmark CommonRoad Website

Cost
Function

J(x,u)

Vehicle
Model

Vehicle
Parameters

1.

Website: https://commonroad.in.tum.de

Matthias Althoff Uninformed Search Winter semester 2023/24 5 / 113

https://commonroad.in.tum.de

Formulating Problems

Another Example: Holiday in Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from
Bucharest.

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Matthias Althoff Uninformed Search Winter semester 2023/24 6 / 113

Formulating Problems

Well-Defined Search Problems

A search problem can be formally defined as follows:

Component Example

State Space: set of possible states {Arad, Zerind, ...}
Initial State: where the agent starts in Arad

Actions Actions(s): possible actions
that are applicable in a state s

Actions(Arad)={ToSibiu,
ToTimisoara, ToZerind}

Transition Model Result(s, a): re-
turns result of action a in state s

Result(Arad, ToZerind)

= Zerind

Goal Test Is-Goal(s): checks whether
s is a goal state

Is-Goal(Pitesti)=false,
Is-Goal(Bucharest)=true

Action Cost
(s, a, s'): cost of ap-
plying action a in state s to reach s’

c(Arad, ToZerind,

Zerind) = 75

Matthias Althoff Uninformed Search Winter semester 2023/24 7 / 113

Example Problems

Vacuum-Cleaner World

A B

Percepts: location and contents, e.g., [A,Dirty]
Actions: Left, Right, Suck , NoOp (No Operation)

Matthias Althoff Uninformed Search Winter semester 2023/24 8 / 113

Example Problems

Vacuum World (Toy Problem I)

1 2

3 4

5 6

7 8

States: Combination of cleaner and dirt locations: 2 · 22 = 8 states.

Initial state: any state.

Actions: Left, Right, and Suck.

Transition model: see next slide.

Goal test: checks whether all locations are clean.

Action cost: Each step costs 1.

Matthias Althoff Uninformed Search Winter semester 2023/24 9 / 113

Example Problems

Vacuum World: Transition Model

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

The transition model can be stored as a directed graph, just like the
Holiday-in-Romania-Problem. This is possible for all discrete problems.

Matthias Althoff Uninformed Search Winter semester 2023/24 10 / 113

Example Problems

8-Puzzle (Toy Problem II)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

Tiles can move to the blank space. How to reach the goal state?

States: Specify the location of each tile and the blank space:
9!/2 = 181440 states (only half of possible initial states can be moved to
the goal state; see Moodle attachment).

Initial state: Any state.

Actions: Movement of the blank space: Left, Right, Up, and Down.

Transition model: Huge, but trivial e.g., if Left applied to start state: ’5’
and ’blank’ are switched.

Goal test: Checks whether the goal configuration is reached.

Action cost: Each step costs 1.

Matthias Althoff Uninformed Search Winter semester 2023/24 11 / 113

Example Problems

8-Queens Problem (Toy Problem III)

Place 8 queens on a chessboard such that no queens attack each other
(A queen attacks any piece in the same row, column or diagonal).

Is the above figure a feasible solution?
Two formulations:

Incremental formulation: Start with an empty chessboard and add a
queen at a time.
Complete-state formulation: Start with 8 queens and move them.

Matthias Althoff Uninformed Search Winter semester 2023/24 12 / 113

Example Problems

8-Queens Problem Description

We try the following incremental formulation:

States: Any arrangement of 0− 8 queens:
64 · 63 · . . . · 57 ≈ 1.8 · 1014 states.

Initial state: No queens on the board.

Actions: Add a queen to any empty square.

Transition model: Returns the board with a queen added to the
specified square.

Goal test: 8 queens on the board, none attacked.

Action cost: Does not apply.

Improvement to reduce complexity: Do not place a queen on a square that
is already attacked.

States*: Any arrangement of 0-8 queens with no queens attacking
each other in the n leftmost columns (now only 2057 states).

Actions*: Add a queen to any empty square in the leftmost empty
column such that it is not attacked by any other queen.
Matthias Althoff Uninformed Search Winter semester 2023/24 13 / 113

Example Problems

Examples of Real-World Problems

Route-Finding problem: Airline travel planning, video
streams in computer networks, etc.

Touring problem: How to best visit a number of places, e.g., in the
map of Romania?

Layout of digital circuits: How to best place components and their
connections on a circuit board?

Robot navigation: Similar to the route-finding problem, but in a
continuous space.

Automatic assembly sequencing: In which order should a product
be assembled?

Protein design: What sequence of amino acids will fold into a
three-dimensional protein?

Matthias Althoff Uninformed Search Winter semester 2023/24 14 / 113

Not
relevant for
the exam

Search Algorithms

Generating a Search Tree (1)

We are searching for an action sequence to a goal state. The possible
actions from the initial state form the search tree:

Root: Initial state.

Branches: Actions.

Nodes: Reached states.

Leaves: Unexpanded nodes. We call the set of leaves the frontier.

A search tree is expanded by applying actions to leaves. Example:

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Matthias Althoff Uninformed Search Winter semester 2023/24 15 / 113

Search Algorithms

Generating a Search Tree (2)

We are searching for an action sequence to a goal state. The possible
actions from the initial state form the search tree:

Root: Initial state.

Branches: Actions.

Nodes: Reached states.

Leaves: Unexpanded nodes. We call the set of leaves the frontier.

A search tree is expanded by applying actions to leaves. Example:

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Matthias Althoff Uninformed Search Winter semester 2023/24 16 / 113

Search Algorithms

Generating a Search Tree (3)

We are searching for an action sequence to a goal state. The possible
actions from the initial state form the search tree:

Root: Initial state.

Branches: Actions.

Nodes: Reached states.

Leaves: Unexpanded nodes. We call the set of leaves the frontier.

A search tree is expanded by applying actions to leaves. Example:

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Matthias Althoff Uninformed Search Winter semester 2023/24 17 / 113

Search Algorithms

Tree-Like Search Algorithm

The basic principle of expanding leaves until a goal is found can be
implemented by the subsequent pseudo code.

function Tree-Like-Search (problem) returns a solution or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

Matthias Althoff Uninformed Search Winter semester 2023/24 18 / 113

Search Algorithms

Tweedback Questions

Does tree-like search always find a solution if one exists?

Is the search tree of a finite graph also finite?

Matthias Althoff Uninformed Search Winter semester 2023/24 19 / 113

Search Algorithms

Avoiding Cycles in the Search Tree

Problem: In the previous example, we went back to Arad from Sibiu:
Expanding from Arad only contains repetitions of previous possibilities.

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Solution: Only expand nodes that have not been visited before. Reached
states are stored in a reached set.

This idea is referred to as graph search (see next slide).

Matthias Althoff Uninformed Search Winter semester 2023/24 20 / 113

Search Algorithms

Graph Search Algorithm

Differences to the tree search are highlighted in orange.

function Graph-Search (problem) returns a solution or failure

initialize the frontier using the initial state of problem

initialize the reached set to be empty

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

and the reached set,

but only if not yet in the reached set on an equal or better path

Matthias Althoff Uninformed Search Winter semester 2023/24 21 / 113

Search Algorithms

Graph Search Algorithm: Illustrations

A sequence of search trees generated by graph search. The northernmost city has
become a dead end; this would not have happened with tree-like search.

(c)(b)(a)

The frontier (white nodes) separates the reached nodes (black nodes) from the
unreached nodes (gray nodes). Nodes are not expanded to previously visited ones.

Matthias Althoff Uninformed Search Winter semester 2023/24 22 / 113

Search Algorithms

Tweedback Questions

Is it possible that graph search is slower than tree-like search?

What is the maximum number of steps required in graph search
(according to slide 21)?

A The shortest number of edges from the initial state to the goal state.
B The number of edges of the graph.
C The number of nodes of the graph minus one.

You have to assemble parts and each part exists only once. What
search technique would you use?

A Tree-like search.
B Graph search.

Matthias Althoff Uninformed Search Winter semester 2023/24 23 / 113

Search Algorithms

Graph Search is Not Always Required

Example: What is the best assembly of a modular robot to fulfill a task?

Graph search would only require more memory without adding any benefit.
Matthias Althoff Uninformed Search Winter semester 2023/24 24 / 113

Search Algorithms

Measuring Problem-Solving Performance

We can evaluate the performance of a search algorithm using the following
criteria:

Completeness: Is it guaranteed that the algorithm finds a solution if
one exists?

Optimality: Does the strategy find the optimal solution (minimum
costs)?

Time complexity: How long does it take to find a solution?

Space complexity: How much memory is needed to perform the
search?

Matthias Althoff Uninformed Search Winter semester 2023/24 25 / 113

Search Algorithms

Infrastructure for Search Algorithms

Structure of a node n

n.STATE: The state in the state space to which the node corresponds;

n.PARENT: The node in the search tree that generated this node;

n.ACTION: The action that was applied to the parent to generate the
node;

n.PATH-COST: The cost, traditionally denoted by g(n), of the path
from the initial state to the node.

Operations on a queue (required for the frontier)

Empty(queue): Returns true if queue is empty;

Pop(queue): Removes the first element of the queue and returns it;

Add(node, queue): Inserts a node and returns the resulting queue.

Matthias Althoff Uninformed Search Winter semester 2023/24 26 / 113

Search Algorithms

Obtaining the Solution

1 Obtain solution (i.e, state and action sequence) by iterating
backwards over parents.

2 Apply actions forward to reach the goal.

n.STATE = A
n.PARENT = ∅
n.ACTION = ∅

n.STATE = . . .
n.PARENT = A
n.ACTION = γ

n.STATE = C
n.PARENT = . . .
n.ACTION = . . .

n.STATE = G
n.PARENT = C
n.ACTION = µ

initial node goal node

solution generation

application

State sequence: A, . . . , C, G.
Action sequence: γ, . . . , µ.

Matthias Althoff Uninformed Search Winter semester 2023/24 27 / 113

Uninformed Search Strategies

Uninformed Search vs. Informed Search

Uninformed search

No additional information besides the problem statement (states,
initial state, actions, transition model, goal test, action cost) is
provided.

Uninformed search can only produce next states and check whether it
is a goal state.

Informed search

Strategies know whether a state is more promising than another to
reach a goal.

Informed search uses measures to indicate the distance to a goal.

Matthias Althoff Uninformed Search Winter semester 2023/24 28 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Idea (1)

Special instance of the graph-search algorithm (slide 21): All nodes are
expanded at a given depth in the search tree before any nodes at the next
level are expanded:

A

B C

D E F G

Matthias Althoff Uninformed Search Winter semester 2023/24 29 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Idea (2)

Special instance of the graph-search algorithm (slide 21): All nodes are
expanded at a given depth in the search tree before any nodes at the next
level are expanded:

A

B C

D E F G

Matthias Althoff Uninformed Search Winter semester 2023/24 30 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Idea (3)

Special instance of the graph-search algorithm (slide 21): All nodes are
expanded at a given depth in the search tree before any nodes at the next
level are expanded:

A

B C

D E F G

Matthias Althoff Uninformed Search Winter semester 2023/24 31 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Idea (4)

Special instance of the graph-search algorithm (slide 21): All nodes are
expanded at a given depth in the search tree before any nodes at the next
level are expanded:

A

B C

D E F G

This will be realized by a FIFO queue (first-in-first-out) for the frontier:
by first popping the first-added nodes, nodes are expanded level-by-level.

Matthias Althoff Uninformed Search Winter semester 2023/24 32 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm

function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)

if problem.Is-Goal(node.State) then return Solution(node)

frontier ← a FIFO queue with node as the only element

reached ← {node.State}
loop do

if Is-Empty(frontier) then return failure

node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do

s ← child.State

if problem.Is-Goal(s) then return Solution(child)

if s is not in reached then

add s to reached

frontier ← Add(child,frontier)

Matthias Althoff Uninformed Search Winter semester 2023/24 33 / 113

(UninformedSearch.ipynb)

Uninformed Search Strategies Breadth-First Search

Auxiliary Algorithm: Expand

function Expand (problem, node) yields nodes

s ← node.State

for each action in problem.Actions(s) do

s ′ ← problem.Result(s, action)

cost ← node.Path-Cost + problem.Action-Cost(s, action, s ′)

yield Node(State=s ′, Parent=node,

Action=action,Path-Cost=cost,Depth=node.Depth+1)

Matthias Althoff Uninformed Search Winter semester 2023/24 34 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 1a)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: A
frontier: A
reached: A

Matthias Althoff Uninformed Search Winter semester 2023/24 35 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 1b)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: A
frontier: ∅
reached: A

Matthias Althoff Uninformed Search Winter semester 2023/24 36 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 1c)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: A
frontier: B
reached: A, B

Matthias Althoff Uninformed Search Winter semester 2023/24 37 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 1d)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: A
frontier: B, C
reached: A, B, C

Matthias Althoff Uninformed Search Winter semester 2023/24 38 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 2a)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: B
frontier: C
reached: A, B, C

Matthias Althoff Uninformed Search Winter semester 2023/24 39 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 2b)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: B
frontier: C, D
reached: A, B, C, D

Matthias Althoff Uninformed Search Winter semester 2023/24 40 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 2c)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: B
frontier: C, D, E
reached: A, B, C, D, E

Matthias Althoff Uninformed Search Winter semester 2023/24 41 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 3a)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal: F
node: C
frontier: D, E
reached: A, B, C, D, E

Matthias Althoff Uninformed Search Winter semester 2023/24 42 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Algorithm (Step 3b)
function Breadth-First-Search (problem) returns a solution or failure

node ← Node(State=problem.Initial-State, Path-Cost=0)
if problem.Is-Goal(node.State) then return Solution(node)
frontier ← a FIFO queue with node as the only element
reached ← {node.State}
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses a shallowest node in frontier

for each child in Expand(problem, node) do
s ← child.State
if problem.Is-Goal(s) then return Solution(child)
if s is not in reached then
add s to reached

frontier ← Add(child,frontier)

A

B C

D E F G

goal state F found!
node: C
frontier: D, E
reached: A, B, C, D, E

Matthias Althoff Uninformed Search Winter semester 2023/24 43 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Performance

We introduce

the branching factor b (maximum number of successors of any node),

the depth d (depth of the shallowest goal node),

the maximum length m of any path in the state space,

and use the previously introduced criteria:

Completeness: Yes, if depth d and branching factor b are finite.

Optimality: Yes, if cost is equal per step; not optimal in general.

Time complexity: The worst case is that each node has b
successors. The number of explored nodes sums up to

b + b2 + b3 + · · ·+ bd = O(bd)

Space complexity: All explored nodes are O(bd−1) and all nodes in
the frontier are O(bd)

Matthias Althoff Uninformed Search Winter semester 2023/24 44 / 113

Uninformed Search Strategies Breadth-First Search

Landau Notation aka Big O Notation
(for students from other disciplines)

Describes the limiting behavior of a function when the argument tends
towards a particular value or infinity. Shall f (x) be the actual function for
parameter x , then there exist positive constants M, x0, such that

|f (x)| ≤ M|g(x)| for all x > x0.

Here, f (b) = b + b2 + b3 + · · · + bd and g(b) = bd . Possible
combinations of M, b0 for d = 5 are:

M = 2, b0 = 2,

M = 1.5, b0 = 3,

M = 1.35, b0 = 4.

Since M, b0 only have to exist and their concrete values do not matter, we
just write O(bd).

Matthias Althoff Uninformed Search Winter semester 2023/24 45 / 113

Uninformed Search Strategies Breadth-First Search

Tweedback Question

Assume: branching factor is b = 10
Up to what depth is a breadth-first-search problem solvable on your
laptop?

A d = 8

B d = 16

C d = 32

Matthias Althoff Uninformed Search Winter semester 2023/24 46 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: Complexity Issue

An exponential complexity, such as O(bd), is a big problem. The following
table lists example time and memory requirements for a branching factor
of b = 10 on a modern computer:

Depth Nodes Time Memory

2 110 0.11 ms 107 kilobytes

4 11, 110 11 ms 10.6 megabytes

6 106 1.1 s 1 gigabyte

8 108 2 min 103 gigabytes

10 1010 3 h 10 terabytes

12 1012 13 days 1 petabyte

14 1014 3.5 years 99 petabytes

16 1016 350 years 10 exabytes

Matthias Althoff Uninformed Search Winter semester 2023/24 47 / 113

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 48 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 48 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 48 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Breadth-First Search

Breadth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 48 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Uniform-Cost Search (aka Dijkstra’s algorithm)

Uniform-Cost Search (aka Dijkstra’s algorithm): Idea (1)

When all step costs are equal, breadth-first is optimal because it
always expands the shallowest nodes.

Uniform-cost search is optimal for any step costs, as it expands the
node with the lowest path cost g(n) = n.Path− Cost.

This is realized by storing the frontier as a priority queue ordered by g .

S

R F

B

B

P

Sibiu (S) Fagaras (F)

Pitesti (P)

Rimnicu Vilcea (R)

Bucharest (B)

99

80

97

101

211

Matthias Althoff Uninformed Search Winter semester 2023/24 49 / 113

Uninformed Search Strategies Uniform-Cost Search (aka Dijkstra’s algorithm)

Uniform-Cost Search (aka Dijkstra’s algorithm): Idea (2)

When all step costs are equal, breadth-first is optimal because it
always expands the shallowest nodes.

Uniform-cost search is optimal for any step costs, as it expands the
node with the lowest path cost g(n) = n.Path− Cost.

This is realized by storing the frontier as a priority queue ordered by g .

S

R F

B

B

P

80 99

Sibiu (S) Fagaras (F)

Pitesti (P)

Rimnicu Vilcea (R)

Bucharest (B)

99

80

97

101

211

Matthias Althoff Uninformed Search Winter semester 2023/24 50 / 113

Uninformed Search Strategies Uniform-Cost Search (aka Dijkstra’s algorithm)

Uniform-Cost Search (aka Dijkstra’s algorithm): Idea (3)

When all step costs are equal, breadth-first is optimal because it
always expands the shallowest nodes.

Uniform-cost search is optimal for any step costs, as it expands the
node with the lowest path cost g(n) = n.Path− Cost.

This is realized by storing the frontier as a priority queue ordered by g .

S

R F

B

B

P

80 99

80+97

=177

Sibiu (S) Fagaras (F)

Pitesti (P)

Rimnicu Vilcea (R)

Bucharest (B)

99

80

97

101

211

Matthias Althoff Uninformed Search Winter semester 2023/24 51 / 113

Uninformed Search Strategies Uniform-Cost Search (aka Dijkstra’s algorithm)

Uniform-Cost Search (aka Dijkstra’s algorithm): Idea (4)

When all step costs are equal, breadth-first is optimal because it
always expands the shallowest nodes.

Uniform-cost search is optimal for any step costs, as it expands the
node with the lowest path cost g(n) = n.Path− Cost.

This is realized by storing the frontier as a priority queue ordered by g .

S

R F

B

B

P

80 99

177
99+211

=310

Sibiu (S) Fagaras (F)

Pitesti (P)

Rimnicu Vilcea (R)

Bucharest (B)

99

80

97

101

211

Matthias Althoff Uninformed Search Winter semester 2023/24 52 / 113

Uninformed Search Strategies Uniform-Cost Search (aka Dijkstra’s algorithm)

Uniform-Cost Search (aka Dijkstra’s algorithm): Idea (5)

When all step costs are equal, breadth-first is optimal because it
always expands the shallowest nodes.

Uniform-cost search is optimal for any step costs, as it expands the
node with the lowest path cost g(n) = n.Path− Cost.

This is realized by storing the frontier as a priority queue ordered by g .

S

R F

B

B

P

80 99

177 310

177+101

=278

Sibiu (S) Fagaras (F)

Pitesti (P)

Rimnicu Vilcea (R)

Bucharest (B)

99

80

97

101

211

Matthias Althoff Uninformed Search Winter semester 2023/24 53 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: A generalization of Uniform-Cost Search

Uniform-Cost Search is a special form of a more general search approach:
Best-First Search.

It uses a priority queue for the frontier, which is ordered by some
parametrized evaluation function f (n): always the node with the minimum
value of f (n) is expanded first.

→ different functions f result in different algorithms.

→ Uniform-Cost Search is Best-First Search with f (n) = g(n).

Matthias Althoff Uninformed Search Winter semester 2023/24 54 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Changes to Breadth-First Search

Goal test is applied to a node when it is selected for expansion rather
than when it is first generated.
Reason: the first generated goal node might be on a suboptimal path.

A test is added in case a better path to an already reached state is
found.
Realization: subsequent operations on the lookup table reached.

Operations on the lookup table reached

s in reached: returns true if reached contains the state s.

reached[s]: returns the node for state s in reached; due to the internal
structure of lookup tables, this can be done in constant timea.

reached[s]← n: sets the value of state s to the node n.

a
https://www.geeksforgeeks.org/introduction-to-hashing-data-structure-and-algorithm-tutorials/

Matthias Althoff Uninformed Search Winter semester 2023/24 55 / 113

https://www.geeksforgeeks.org/introduction-to-hashing-data-structure-and-algorithm-tutorials/

Uninformed Search Strategies Best-First Search

Best-First: Algorithm

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)

frontier ← a priority queue ordered by f , with node as the only element

reached ← a lookup table, with one entry (node.State → node)

loop do

if Is-Empty(frontier) then return failure

node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)

for each child in Expand(problem,node) do

s ← child.State

if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Insert(child,frontier)

By removing the lines in orange we obtain a tree-like search.

Matthias Althoff Uninformed Search Winter semester 2023/24 56 / 113

(UninformedSearch.ipynb)

Uninformed Search Strategies Best-First Search

Tweedback Question

Can Breadth-First Search be implemented using Best-First Search?

Matthias Althoff Uninformed Search Winter semester 2023/24 57 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 1a)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: A(0) (path cost in parentheses)
frontier: A(0)
reached: A

Matthias Althoff Uninformed Search Winter semester 2023/24 58 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 1b)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: A(0)
frontier: ∅
reached: A

Matthias Althoff Uninformed Search Winter semester 2023/24 59 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 1c)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: A(0)
frontier: B(2)
reached: A, B

Matthias Althoff Uninformed Search Winter semester 2023/24 60 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 1d)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: A(0)
frontier: B(2), C(3)
reached: A, B, C

Matthias Althoff Uninformed Search Winter semester 2023/24 61 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 2a)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: B(2)
frontier: C(3)
reached: A, B, C

Matthias Althoff Uninformed Search Winter semester 2023/24 62 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 2b)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: B(2)
frontier: C(3), D(3)
reached: A, B, C, D

Matthias Althoff Uninformed Search Winter semester 2023/24 63 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 2c)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: B(2)
frontier: C(3), D(3), E(6)
reached: A, B, C, D, E

Matthias Althoff Uninformed Search Winter semester 2023/24 64 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 3a)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: C(3)
frontier: D(3), E(6)
reached: A, B, C, D, E

Matthias Althoff Uninformed Search Winter semester 2023/24 65 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 3b)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: C(3)
frontier: D(3), E(6), F(8)
reached: A, B, C, D, E, F

Matthias Althoff Uninformed Search Winter semester 2023/24 66 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 3c)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: C(3)
frontier: D(3), G(5), E(6), F(8)
reached: A, B, C, D, E, F, G

Matthias Althoff Uninformed Search Winter semester 2023/24 67 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 4)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: D(3)
frontier: G(5), E(6), F(8)
reached: A, B, C, D, E, F, G

Matthias Althoff Uninformed Search Winter semester 2023/24 68 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 5a)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal: G
node: G(5)
frontier: E(6), F(8)
reached: A, B, C, D, E, F, G

Matthias Althoff Uninformed Search Winter semester 2023/24 69 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Algorithm for f (n) = g(n) (Step 5b)

function Best-First-Search (problem, f) returns a solution or failure

node ← Node(State=problem.Initial-State,Path-Cost=0)
frontier ← a priority queue ordered by f , with n ode as the only element
reached ← a lookup table, with one entry (node.State → node)
loop do
if Is-Empty(frontier) then return failure
node ← Pop(frontier) // chooses the node n with minimum f (n) in frontier

if problem.Is-Goal(node.State) then return Solution(node)
for each child in Expand(problem,node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then

reached[s] ← child

frontier ← Add(child,frontier)

2

2541

3A

B C

D E F G

goal state G found!
node: G(5)
frontier: E(6), F(8)
reached: A, B, C, D, E, F, G

Matthias Althoff Uninformed Search Winter semester 2023/24 70 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: Performance for f (n) = g(n)

We introduce

the cost C∗ of the optimal solution,

the minimum step-cost ǫ,

and use the previously introduced criteria:

Completeness: Yes, if costs are greater than 0 (otherwise infinite
optimal paths of zero cost exist).

Optimality: Yes (if cost ≥ ǫ for positive ǫ).

Time complexity: The worst case is that the goal branches of a
node with huge costs and all other step costs are ǫ. The number of
explored nodes (for e.g. d = 1) sums up to

(b− 1) + (b− 1)b+ (b− 1)b2 + · · ·+ (b− 1)b⌊C
∗/ǫ⌋ = O(b1+⌊C∗/ǫ⌋),

where ⌊a⌋ returns the next lower integer of a. We require ’+1’ since
the goal test is performed after the expansion.

Space complexity: Equals time complexity since all nodes are stored.

Matthias Althoff Uninformed Search Winter semester 2023/24 71 / 113

Uninformed Search Strategies Best-First Search

Best-First Search: CommonRoad Example for f (n) = g(n)

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

g(n): Time to reach current state.

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 72 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Best-First Search

Best-First Search: CommonRoad Example for f (n) = g(n)

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

g(n): Time to reach current state.

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 72 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Best-First Search

Best-First Search: CommonRoad Example for f (n) = g(n)

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

g(n): Time to reach current state.

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 72 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Best-First Search

Best-First Search: CommonRoad Example for f (n) = g(n)

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

g(n): Time to reach current state.

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 72 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Best-First Search

Best-First Search: CommonRoad Example for f (n) = g(n)

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

g(n): Time to reach current state.

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 72 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (1)

We always expand the deepest node in the frontier:

A

B C

D E F G

H I J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 73 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (2)

We always expand the deepest node in the frontier:

A

B C

D E F G

H I J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 74 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (3)

We always expand the deepest node in the frontier:

A

B C

D E F G

H I J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 75 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (4)

We always expand the deepest node in the frontier:

A

B C

D E F G

H I J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 76 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (5)

We always expand the deepest node in the frontier:

A

B C

D E F G

I J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 77 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (6)

We always expand the deepest node in the frontier:

A

B C

E F G

J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 78 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (7)

We always expand the deepest node in the frontier:

A

B C

E F G

J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 79 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Idea (8)

We always expand the deepest node in the frontier:

A

B C

E F G

K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 80 / 113

Uninformed Search Strategies Depth-First Search

Tweedback Question

Can Depth-First Search be implemented using Best-First Search?

Solution: Best-First Search with f (n) = −n.Depth.

But: usually implemented as a tree-like search (for pseudo-code, please see
Depth-Limited Search on slide 86 with limit=∞).

Matthias Althoff Uninformed Search Winter semester 2023/24 81 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: Performance

Reminder: Branching factor b, depth d, maximum length m of any path.

Completeness: No. But: for finite state spaces, completeness can be
achieved by checking for cycles.

Optimality: No. Why?

Time complexity: The worst case is that the goal path is tested last,
resulting in O(bm).
Reminder: Breadth-first has O(bd) and d ≤ m.

Space complexity: The advantage of depth-first when recursively
implemented is a good space complexity: One only needs to store a
single path from the root to the leaf plus unexplored sibling nodes
(see next slide). There are at most m nodes to a leaf and b nodes
branching off from each node, resulting in O(bm) nodes.

Matthias Althoff Uninformed Search Winter semester 2023/24 82 / 113

Uninformed Search Strategies Depth-First Search

Space Requirement for Depth-First Search

A

C

F G

M N O

A

C

F G

L M N O

A

C

F G

L M N O

C

F G

L M N O

A

B C

E F G

K L M N O

A

C

E F G

J K L M N O

A

C

E F G

J K L M N O

A

B C

D E F G

I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

B

B

A

Example:
b = 10, d = m = 16:
breadth-first: 10 exabytes
depth-first: 156 kilobytes

better by a factor of
≈ 7 · 1013

Matthias Althoff Uninformed Search Winter semester 2023/24 83 / 113

Uninformed Search Strategies Depth-First Search

Depth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 84 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-First Search

Depth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 84 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-First Search

Depth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 84 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-First Search

Depth-First Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 84 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Idea

Shortcoming in depth-first search:
Depth-first search does not terminate in infinite state spaces. Why?

Solution:
Introduce depth limit l.

New issue:
How to choose the depth-limit?

Realization:
LIFO queue (last-in-first-out, also known as stack) for the frontier: it first
pops the most recently added node.

Matthias Althoff Uninformed Search Winter semester 2023/24 85 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only

element

result ← failure

while not Is-Empty(frontier) do

node ← Pop(frontier)

if problem.Is-Goal(node.State) then return Solution(node)

if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then

for each child in Expand(problem,node) do

frontier ← Add(child,frontier)

return result

Here: the function Is-Cycle(node) iterates the chain of Parent-pointers
upwards to check whether the state node.State already exists in a previous node.
The maximum number of iterated Parent-pointers is generally user-defined.

Matthias Althoff Uninformed Search Winter semester 2023/24 86 / 113

(UninformedSearch.ipynb)

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 1)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: -
frontier: A
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 87 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 2a)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: A
frontier: ∅
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 88 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 2b)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: A
frontier: B
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 89 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 2c)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: A
frontier: B, C
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 90 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 3a)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: C
frontier: B
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 91 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 3b)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: C
frontier: B, E
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 92 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 3c)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: C
frontier: B, E, F
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 93 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 4a)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: F
frontier: B, E
result: failure

Matthias Althoff Uninformed Search Winter semester 2023/24 94 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 4b)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: F
frontier: B, E
result: cutoff

Matthias Althoff Uninformed Search Winter semester 2023/24 95 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 5a)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: E
frontier: B
result: cutoff

Matthias Althoff Uninformed Search Winter semester 2023/24 96 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 5b)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: E
frontier: B
result: cutoff

Matthias Althoff Uninformed Search Winter semester 2023/24 97 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 6a)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: B
frontier: ∅
result: cutoff

Matthias Althoff Uninformed Search Winter semester 2023/24 98 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 6b)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: B
frontier: D
result: cutoff

Matthias Althoff Uninformed Search Winter semester 2023/24 99 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 7a)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal: D
limit: 1
node: D
frontier: ∅
result: cutoff

Matthias Althoff Uninformed Search Winter semester 2023/24 100 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Algorithm (Step 7b)

function Depth-Limited-S. (problem,limit) returns a solution or failure/cutoff

frontier ← a LIFO queue (stack) with Node(problem.Initial-State) as the only
element
result ← failure

while not Is-Empty(frontier) do
node ← Pop(frontier)
if problem.Is-Goal(node.State) then return Solution(node)
if node.Depth > limit then result ← cutoff

else if not Is-Cycle(node) then
for each child in Expand(problem,node) do

frontier ← Add(child,frontier)
return result

A

B C

D E F

G H

goal state D found!
limit: 1
node: D
frontier: ∅
result: cutoff

Matthias Althoff Uninformed Search Winter semester 2023/24 101 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: Performance

Reminder: Branching factor b, depth d, maximum length m of any path,
and depth limit l.

Completeness: No, if l < d . Why?

Optimality: No, if l > d . Why?

Time complexity: Same as for depth-first search, but with l instead
of m: O(bl).

Space complexity: Same as for depth-first search, but with l instead
of m: O(bl).

Matthias Althoff Uninformed Search Winter semester 2023/24 102 / 113

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Depth limit: 7

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 103 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Depth limit: 7

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 103 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Depth limit: 7

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 103 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Depth-Limited Search

Depth-Limited Search: CommonRoad Example

Frontier
Collision
(Currently) Explored

Concatenation of motion primitives.

Note: Colliding states are not further considered (collision with
obstacle or out of road boundary).

Depth limit: 7

Link to tutorial: cr uninformed search tutorial.ipynb.

Matthias Althoff Uninformed Search Winter semester 2023/24 103 / 113

https://gitlab.lrz.de/tum-cps/commonroad-search/-/blob/master/notebooks/tutorials/cr_uninformed_search_tutorial.ipynb

Uninformed Search Strategies Iterative Deepening Search

Iterative Deepening Search: Idea and Algorithm

Shortcoming in depth-limited search:
One typically does not know the depth d of the goal state.

Solution:
Use depth-limited search and iteratively increase the depth limit l.

function Iterative-Deepening-Search (problem) returns a solution or
failure

for depth= 0 to ∞ do
result ← Depth-Limited-Search(problem, depth)
if result 6= cutoff then return result

Matthias Althoff Uninformed Search Winter semester 2023/24 104 / 113

Uninformed Search Strategies Iterative Deepening Search

Iterative Deepening Search: Example (1)

Limit = 1 A

B C

A

B C

A

C

Limit = 0 A

Limit = 2 A

B C

D E F G

A

B C

E F G

A

B C

D E F G

A

B C

D E F G

A

C

F G

A

C

G

A

C

F G

Matthias Althoff Uninformed Search Winter semester 2023/24 105 / 113

(UninformedSearch.ipynb)

Uninformed Search Strategies Iterative Deepening Search

Iterative Deepening Search: Example (2)

Limit = 3

A

C

F G

M N O

A

C

F G

L M N O

A

C

F G

L M N O

A

C

F G

L M N O

A

B C

E F G

K L M N O

A

B C

E F G

J K L M N O

A

B C

E F G

J K L M N O

A

B C

D E F G

I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Matthias Althoff Uninformed Search Winter semester 2023/24 106 / 113

Uninformed Search Strategies Iterative Deepening Search

Iterative Deepening Search: Performance

Reminder: Branching factor b, depth d, maximum length m of any path,
and depth limit l.

Completeness: Yes, if depth d of the goal state is finite.

Optimality: Yes (if cost = 1 per step); not optimal in general.

Time complexity: The nodes at the bottom level are generated
once, those on the next-to-bottom level are generated twice, and so
on, up to the children of the root, which are generated d times:

(d)b + (d − 1)b2 + . . .+ (1)bd = O(bd)

which equals the one of breadth-first search.

Space complexity: Same as for depth-first search, but with d instead
of m: O(bd). Why?

Matthias Althoff Uninformed Search Winter semester 2023/24 107 / 113

Uninformed Search Strategies Iterative Deepening Search

Comparison of Computational Effort

The intuition that the iterative deepening search requires a lot of time is
wrong. The search within the highest level is dominating.

Example:
b = 10, d = 5, solution at far right leaf:

Breadth-first search:

b + b2 + b3 + · · ·+ bd

=10 + 100 + 1000 + 10, 000 + 100, 000 = 111, 110

Iterative deepening search:

(d)b + (d − 1)b2 + . . .+ (1)bd

=5 · 10 + 4 · 100 + 3 · 1000 + 2 · 10, 000 + 100, 000 = 123, 450

The difference is almost negligible and becomes relatively smaller, the
larger the problem is.

Matthias Althoff Uninformed Search Winter semester 2023/24 108 / 113

Uninformed Search Strategies Bidirectional Search

Bidirectional Search: Idea

The main idea is to run two searches: One from the initial state and one
backward from the goal, hoping that both searches meet in the middle.

Motivation:
b

d

2 + b
d

2 < bd . This is also visualized in the figure, where the area from
both search trees together is smaller than from one tree reaching the goal:

GoalStart

Matthias Althoff Uninformed Search Winter semester 2023/24 109 / 113

Uninformed Search Strategies Bidirectional Search

Tweedback Question

Is it always possible to use bidirectional search?

Matthias Althoff Uninformed Search Winter semester 2023/24 110 / 113

Uninformed Search Strategies Bidirectional Search

Bidirectional Search: Comments

Bidirectional search requires one to “search backwards”.

Easy: When all actions are reversible and there is only one goal,
e.g., 8-puzzle, or finding a route in Romania

Difficult: When the goal is an abstract description and there exist
many goal states,
e.g., 8-queens: “No queen attacks another queen”. What are the goal
states? This would already be the solution...

Matthias Althoff Uninformed Search Winter semester 2023/24 111 / 113

Comparison and Summary

Comparing Uninformed Search Strategies

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deep-
ening

Complete? Yesa Yesa,b No Yes, if l ≥ d Yesa

Optimal? Yesc Yes No No Yesc

Time O(bd) O(b1+⌊C∗/ǫ⌋) O(bm) O(bl) O(bd)

Space O(bd) O(b1+⌊C∗/ǫ⌋) O(bm) O(bl) O(bd)

a: complete if b is finite
b: complete if step costs ≥ ǫ for positive ǫ
c: optimal if all step costs are identical

Matthias Althoff Uninformed Search Winter semester 2023/24 112 / 113

Summary

Summary

A well-defined search problem consists of: states, the initial state, actions,
a transition model, a goal test, and an action cost function.

Search algorithms are typically judged by completeness, optimality, time
complexity, and space complexity.

Breadth-first search: expands the shallowest nodes first; it is complete,
optimal for unit step costs, but has exponential space complexity.

Uniform-cost search: expands the node with the lowest path cost and is
optimal for general step costs; special instance of Best-First Search.

Depth-first search and Depth-limited search: expands the deepest
unexpended node first. It is neither complete nor optimal, but has linear
space complexity.

Iterative deepening search: calls depth-first search with increasing depth
limits. It is complete, optimal for unit step costs, has time complexity like
breadth-first search and linear space complexity.

Bidirectional search: can enormously reduce time complexity, but is not
always applicable.
Matthias Althoff Uninformed Search Winter semester 2023/24 113 / 113

	Formulating Problems
	Example Problems
	Search Algorithms
	Uninformed Search Strategies
	Breadth-First Search
	Uniform-Cost Search (aka Dijkstra's algorithm)
	Best-First Search
	Depth-First Search
	Depth-Limited Search
	Iterative Deepening Search
	Bidirectional Search

	Comparison and Summary
	Summary

