CommonRoad: Composable Benchmarks for Motion Planning on Roads

Matthias Althoff, Markus Koschi, and Stefanie Manzinger

Technical University of Munich

June 13, 2017
Examples of IV’16 Papers on Motion Planning

Chen et al.: Combining Task and Motion [...]

Guo et al.: Adaptive Vehicle Longitudinal [...] Guo et al.: Learning-based Trajectory [...]

Reproducible? Comparable?

Gu et al.: Runtime-Bounded Tunable Motion Planning for Autonomous Driving

Klingelschmitt et al.: Probabilistic Situation [...]

Schmied et al.: Scenario Model Predictive [...]
Required Ingredients for Motion Planning Problems

Scenario

Road network
Required Ingredients for Motion Planning Problems

Scenario

Road network, initial state x_0
Required Ingredients for Motion Planning Problems

Scenario

Road network, initial state x_0, goal region \mathcal{G}
Required Ingredients for Motion Planning Problems

Scenario

Road network, initial state x_0, goal region G, static obstacles
Required Ingredients for Motion Planning Problems

Scenario

Road network, initial state x_0, goal region G, static obstacles, dynamic obstacles (including movement over time)
Required Ingredients for Motion Planning Problems

Vehicle model

\[\dot{x}(t) = f(x(t), u(t)) \]

\(x \): state, \(u \): input

Scenario

Road network, initial state \(x_0 \), goal region \(G \), static obstacles, dynamic obstacles (including movement over time)
Required Ingredients for Motion Planning Problems

Vehicle model

\[\dot{x}(t) = f(x(t), u(t)) \]

- \(x \): state, \(u \): input

Cost function

\[J_C = \Phi_C(x(t_0), t_0, x(t_f), t_f) + \int_{t_0}^{t_f} L_C(x(t), u(t), t) \, dt \]

- \(\Phi_C \): terminal costs,
- \(L_C \): running costs

Scenario

Road network, initial state \(x_0 \), goal region \(G \), static obstacles, dynamic obstacles (including movement over time)
Examples of Benchmarks in Related Areas

Robotic grasping
OpenGrasp

Simultaneous localization and mapping (SLAM)
OpenSLAM

Computer vision
KITTI Vision Benchmark Suite
Composable Benchmarks with a Unique ID

<table>
<thead>
<tr>
<th>Vehicle model</th>
<th>Cost function</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-mass model (PM)</td>
<td></td>
<td>Recorded highway data US 101 (NGSIM_US101_0)</td>
</tr>
<tr>
<td></td>
<td>Bobrow et al., 1988 (JB1)</td>
<td>Road network</td>
</tr>
<tr>
<td></td>
<td>Anderson et al., 2010 (SA1)</td>
<td>Static obstacles</td>
</tr>
<tr>
<td></td>
<td>Xu et al., 2012 (WX1)</td>
<td>Dynamic obstacles</td>
</tr>
<tr>
<td></td>
<td>Other cost functions</td>
<td>Initial state</td>
</tr>
<tr>
<td>Kinematic single-track model (KS)</td>
<td></td>
<td>Goal region</td>
</tr>
<tr>
<td>Other vehicle models</td>
<td></td>
<td>etc.</td>
</tr>
<tr>
<td>Standard ID:</td>
<td>PM1:JB1:NGSIM_US101_0</td>
<td>Other scenarios</td>
</tr>
</tbody>
</table>
Composable Benchmarks with a Unique ID

<table>
<thead>
<tr>
<th>Vehicle model</th>
<th>Cost function</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-mass model (PM)</td>
<td></td>
<td>Recorded highway data US 101 (NGSIM_US101_0)</td>
</tr>
<tr>
<td>- PM1</td>
<td>Bobrow et al., 1988 (JB1)</td>
<td>- Road network</td>
</tr>
<tr>
<td>- PM2</td>
<td>Anderson et al., 2010 (SA1)</td>
<td>- Static obstacles</td>
</tr>
<tr>
<td>- etc.</td>
<td>Xu et al., 2012 (WX1)</td>
<td>- Dynamic obstacles</td>
</tr>
<tr>
<td>Kinematic single-track model (KS)</td>
<td>Other cost functions</td>
<td>- Initial state</td>
</tr>
<tr>
<td>Other vehicle models</td>
<td></td>
<td>- Goal region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- etc.</td>
</tr>
</tbody>
</table>

Standard ID: PM1:JB1:NGSIM_US101_0

Modification (M-): PM1:M-JB1:NGSIM_US101_0
Composable Benchmarks with a Unique ID

<table>
<thead>
<tr>
<th>Vehicle model</th>
<th>Cost function</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-mass model (PM)</td>
<td>Bobrow et al., 1988 (JB1)</td>
<td>Recorded highway data US 101 (NGSIM_US101_0)</td>
</tr>
<tr>
<td>PM1</td>
<td>Anderson et al., 2010 (SA1)</td>
<td>Road network</td>
</tr>
<tr>
<td>PM2</td>
<td>Xu et al., 2012 (WX1)</td>
<td>Static obstacles</td>
</tr>
<tr>
<td>etc.</td>
<td>Other cost functions</td>
<td>Dynamic obstacles</td>
</tr>
<tr>
<td>Kinematic single-track model (KS)</td>
<td></td>
<td>Initial state</td>
</tr>
<tr>
<td>Other vehicle models</td>
<td></td>
<td>Goal region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>etc.</td>
</tr>
</tbody>
</table>

Standard ID: PM1:JB1:NGSIM_US101_0
Modification (M-): PM1:M-JB1:NGSIM_US101_0
Individual component (IND): IND:M-JB1:NGSIM_US101_0
Composable Benchmarks with a Unique ID

<table>
<thead>
<tr>
<th>Vehicle model</th>
<th>Cost function</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-mass model (PM)</td>
<td>Bobrow et al., 1988 (JB1)</td>
<td>Recorded highway data US 101 (NGSIM_US101_0)</td>
</tr>
<tr>
<td>PM1</td>
<td>Anderson et al., 2010 (SA1)</td>
<td>Road network</td>
</tr>
<tr>
<td>PM2</td>
<td>Xu et al., 2012 (WX1)</td>
<td>Static obstacles</td>
</tr>
<tr>
<td>etc.</td>
<td>Other cost functions</td>
<td>Dynamic obstacles</td>
</tr>
<tr>
<td>Kinematic single-track model (KS)</td>
<td></td>
<td>Initial state</td>
</tr>
<tr>
<td>Other vehicle models</td>
<td></td>
<td>Goal region</td>
</tr>
</tbody>
</table>

Standard ID: PM1:JB1:NGSIM_US101_0
Modification (M-): PM1:M-JB1:NGSIM_US101_0
Individual component (IND): IND:M-JB1:NGSIM_US101_0
Collaboration (C-): [PM1,PM2]:[M-JB1,SA1]:C-NGSIM_(...)
Models

Point-mass model (PM)
- Holonomic system
- $\ddot{x} = a_x$, $\ddot{y} = a_y$

Kinematic single-track model (KS)
- Nonholonomic system
- Considers minimum turning radius
- No tire slip

Single-track model (ST)
- Considers tire slip
- Can explain understeer and oversteer
- No individual tire loads

Multi-body model (MB)
- Individual tire loads
- Effects from yaw, pitch, and roll
- Detailed suspension model
Cost Functions

Like the benchmarks, the cost functions are composable:

$$J_C(x(t), u(t), t_0, t_f) = \sum_{i \in I} w_i J_i(x(t), u(t), t_0, t_f),$$

where I contains the IDs of partial cost functions and $w_i \in \mathbb{R}^+$ are weights. Examples:

- **Time:** $J_T = t_f$ (see Bobrow et al., 1988).
- **Acceleration:** $J_A = \int_{t_0}^{t_f} a(t)^2 \, dt$ (see Ziegler et al., 2014b).
- **Jerk:** $J_J = \int_{t_0}^{t_f} \dot{a}(t)^2 \, dt$ (see Werling et al., 2010).
- **Steering angle:** $J_{SA} = \int_{t_0}^{t_f} \delta(t)^2 \, dt$ (see Magdici et al., 2016).
- etc.

A set of useful weights is provided by cost-function IDs (e.g. $JB1$, $SA1$, and $WX1$).
Scenarios: Road Network

Scenarios: Road Network

Example of a complicated crossing in Munich:
Scenarios: Obstacles

- Known behavior
- Unknown behavior
- Stochastic behavior

Occupancy at final time of prediction horizon

Trajectory
Source for Known Behavior: Recorded Data

Camera facing US Interstate 80.

Coverage of individual cameras.

Next Generation Simulation (NGSIM) dataset:

1. Lankershim Boulevard
2. US Highway 101
Source for Unknown Behavior: SPOT

A Tool for Set-based Prediction of Traffic Participants (SPOT). Tool presented

Example:

(a) $t \in [1.5 \text{ s}, 2.0 \text{ s}]$.

(b) $t \in [0 \text{ s}, 3.0 \text{ s}]$.

Computation time: ≈ 100 times faster than maneuver time (MATLAB, Intel i7, 2.6GHz); total time: 25 ms (3 parallel processes).
Example

- **Vehicle model:** M-KS1 (modification: v_S is changed to $v_S \to \infty$).
- **Cost function:** SM1.
- **Scenario:** NGSIM_US101_0.

Thus, the unique ID of this example is **M-KS1:SM1:NGSIM_US101_0**.

Possible solution:

$t = 0.0$ s

$t = 2.5$ s

$t = 5.5$ s

- **ego vehicle**
- **obstacle A**
- **obstacle B**
Key Features

- **Reproducibility/unambiguity:** Unambiguous information representation & manuals on our website.
Key Features

- **Reproducibility/unambiguity**: Unambiguous information representation & manuals on our website.

- **Composability**: All components (vehicle models, cost functions, and scenarios) are interchangeable.
Key Features

- **Reproducibility/unambiguity**: Unambiguous information representation & manuals on our website.
- **Composability**: All components (vehicle models, cost functions, and scenarios) are interchangeable.
- **Representativeness**: Real traffic and hand-crafted problems (most recorded traffic situations are not critical).
Key Features

- **Reproducibility/unambiguity:** Unambiguous information representation & manuals on our website.

- **Composability:** All components (vehicle models, cost functions, and scenarios) are interchangeable.

- **Representativeness:** Real traffic and hand-crafted problems (most recorded traffic situations are not critical).

- **Portability:** XML for scenarios (platform-independent); Vehicle models in MATLAB and Python (both platform-independent).
Key Features

- **Reproducibility/unambiguity:** Unambiguous information representation & manuals on our website.

- **Composability:** All components (vehicle models, cost functions, and scenarios) are interchangeable.

- **Representativeness:** Real traffic and hand-crafted problems (most recorded traffic situations are not critical).

- **Portability:** XML for scenarios (platform-independent); Vehicle models in MATLAB and Python (both platform-independent).

- **Scalability:** From simple static to complex scenarios with many dynamic obstacles.
Key Features

- **Reproducibility/unambiguity**: Unambiguous information representation & manuals on our website.
- **Composability**: All components (vehicle models, cost functions, and scenarios) are interchangeable.
- **Representativeness**: Real traffic and hand-crafted problems (most recorded traffic situations are not critical).
- **Portability**: XML for scenarios (platform-independent); Vehicle models in MATLAB and Python (both platform-independent).
- **Scalability**: From simple static to complex scenarios with many dynamic obstacles.
- **Openness**: All benchmarks downloadable from our website & possibility to suggest new ones.
Key Features

- **Reproducibility/unambiguity:** Unambiguous information representation & manuals on our website.
- **Composability:** All components (vehicle models, cost functions, and scenarios) are interchangeable.
- **Representativeness:** Real traffic and hand-crafted problems (most recorded traffic situations are not critical).
- **Portability:** XML for scenarios (platform-independent); Vehicle models in MATLAB and Python (both platform-independent).
- **Scalability:** From simple static to complex scenarios with many dynamic obstacles.
- **Openness:** All benchmarks downloadable from our website & possibility to suggest new ones.
- **Independence:** Our benchmarks are independent from planning libraries.
INTRODUCTION TO COMMONROAD

Numerical experiments for motion planning of road vehicles require numerous ingredients: vehicle dynamics, a road network, static obstacles, dynamic obstacles and their movement over time, goal regions, a cost function, etc. Providing a description of the numerical experiment precise enough to reproduce it might require several pages of information. Thus, only key aspects are typically described in scientific publications, making it impossible to reproduce results - yet, reproducibility is an important asset of good science.

Composable benchmarks for motion planning on roads (CommonRoad) are proposed so that numerical experiments are fully defined by a unique ID; all required information to reconstruct the experiment can be found on the CommonRoad website. Each benchmark is composed by a vehicle model, a cost function, and a scenario (including goals and constraints). The scenarios are partly recorded from real traffic and partly hand-crafted to create dangerous situations.

We hope that CommonRoad saves researchers time since one does not have to search for realistic parameters of vehicle dynamics or realistic traffic situations, yet having the freedom to compose a benchmark that fits one's needs.

REFERENCES

CommonRoad is introduced in our paper M. Althoff, M. Koschi, and S. Manzinger, "CommonRoad: Composable Benchmarks for Motion Planning on Roads," in Proc. of the IEEE Intelligent Vehicles Symposium, 2017. [to appear]

SUGGEST NEW BENCHMARKS

We offer you the possibility to suggest new benchmarks. If you want to contribute a new component, e.g. a scenario, please contact us.
Conclusions

- First composable benchmark problems for motion planning on roads.
Conclusions

- First composable benchmark problems for motion planning on roads.
- All details can be found on our website: CommonRoad.in.tum.de.
Conclusions

- First composable benchmark problems for motion planning on roads.
- All details can be found on our website: CommonRoad.in.tum.de.
- Each composed benchmark has a unique ID that can be used in publications or for one’s own organization of benchmarks.
Conclusions

- First composable benchmark problems for motion planning on roads.
- All details can be found on our website: CommonRoad.in.tum.de.
- Each composed benchmark has a unique ID that can be used in publications or for one’s own organization of benchmarks.
- Mix of recorded and constructed scenarios as well as scenarios on highways, on rural roads, and in urban settings.
Conclusions

- First composable benchmark problems for motion planning on roads.
- All details can be found on our website: CommonRoad.in.tum.de.
- Each composed benchmark has a unique ID that can be used in publications or for one’s own organization of benchmarks.
- Mix of recorded and constructed scenarios as well as scenarios on highways, on rural roads, and in urban settings.
- Our platform-independent repository can be extended by other researchers and will also be extended by ourselves.